» 
allemand anglais arabe bulgare chinois coréen croate danois espagnol estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien
allemand anglais arabe bulgare chinois coréen croate danois espagnol estonien finnois français grec hébreu hindi hongrois islandais indonésien italien japonais letton lituanien malgache néerlandais norvégien persan polonais portugais roumain russe serbe slovaque slovène suédois tchèque thai turc vietnamien

définition - Induction logique

voir la définition de Wikipedia

   Publicité ▼

dictionnaire collaboratif

Vous pouvez participer à l'enrichissement du dictionnaire et proposer vos propres définitions pour ce mot ou un autre.

Inscription possible avec votre compte Facebook

Wikipedia

Induction (logique)

                   
Page d'aide sur l'homonymie Pour les articles homonymes, voir Induction.
Inférence
Les types de raisonnement rigoureux
Les types de raisonnement non-rigoureux
Les types de raisonnement faux

L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste.

Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion « philosophique » de l'induction. En effet, en mathématiques, en logique et en informatique, l'induction complète, aujourd'hui très souvent abrégée en induction, est une autre façon de désigner la récurrence, aussi bien le raisonnement par récurrence que les définitions par récurrence. Le terme est souvent employé pour les généralisations de la récurrence aux bons ordres et aux relations bien fondées. En raisonnement automatisé, l'abduction est un mode de raisonnement qui vise à émettre une hypothèse pour expliquer un fait et elle ne doit pas être confondue avec l'induction présentée ici[1].

Sommaire

  Histoire du concept

L'idée de départ de cette conception de l'induction était que la répétition d'un phénomène augmente la probabilité de le voir se reproduire. C'est par exemple la façon dont réagit le cerveau chez le chien de Pavlov par exemple. L'accumulation de faits concordants et l'absence de contre-exemples permet, ensuite, d'augmenter le niveau de plausibilité de la loi jusqu'au moment où on "choisit" par souci de simplification de la considérer comme une quasi-certitude : ainsi en est-il du deuxième principe de la thermodynamique.On n'atteint jamais la certitude "complète" ; tout contre-exemple approprié peut remettre "immédiatement" cette « loi » en cause.

Ensuite, des théorèmes comme celui de Cox ont donné à cette démarche inductive d'abord empirique une base mathématique ferme ; ils ont permis de calculer les probabilités concernées sans aucun arbitraire à une position de départ donnée près.

Mais la définition précédente est assez impropre. Par exemple, on pourrait dire que « cette table-ci est lourde, donc cette table-là est lourde » est un exemple d'induction, mais dans ce cas, il ne s'agit pas de chercher une "loi générale" à partir d'un fait particulier. Plus récemment, l'« induction » en est donc venue à signifier un genre de raisonnement qui n'assure pas la vérité de sa conclusion étant donné les préalables[2]. Ce raisonnement est le contraire de la déduction, qui est un genre de raisonnement où la conclusion ne peut pas être fausse, étant donné les préalables.

  Exemple

Par exemple : Si la loi de la gravitation universelle détermine que, et comment, une pomme qui se détache de son arbre tombera sur le sol, l'observation du mouvement de cette même pomme permet d'établir la loi générale, mais avec une probabilité ou une certitude très faible. Si ensuite, on observe que toutes les pommes et tous les corps tombent de la même façon, si on observe que les corps dans l'espace respectent la même loi, alors la probabilité de la loi augmentera jusqu'à devenir une quasi certitude. Dans le cas de la gravitation universelle, cependant, on a observé que l'orbite de Mercure présentait un effet de précession qui n'était pas expliqué par la loi[3]. La loi de la gravitation universelle est cependant restée utilisée jusqu'à ce que Henri Poincaré explique le phénomène par une nouvelle loi de composition des vitesses qui conserve l'invariance de la vitesse de la lumière transformations de Lorentz et qui sera expliqué par Einstein dans la théorie de la relativité restreinte. Malgré tout, la gravitation universelle reste utilisée car elle reste valable dans les cas courants, et elle est plus simple à utiliser et à comprendre que la théorie de la relativité.

  Ancienne vision de l'induction

De manière générale, l'induction, contrairement à la déduction, est un raisonnement logiquement "inexact", qui est appuyé par sa "vérification" répétée, mais qui peut toujours être démenti par un contre-exemple. Il est cependant universellement utilisé pour deux raisons :

  • À l'exclusion de la logique et des mathématiques qui consistent explicitement à poser des axiomes "arbitraires" (ou "conventionnels) sur la base desquels elles raisonnent par la déduction, toutes les autres sciences tentent de décrire la réalité et ne peuvent le faire, semble t-il, qu'exclusivement sur la base de la "vérification" par l'observation, ce qui les oblige à faire appel à l'induction et leur interdit souvent toute possibilité d'utiliser la déduction pure.
  • Tous les systèmes vivants semblent fonctionner sur la base de l'induction. L'apprentissage par le cerveau, se basant sur sa confrontation avec la réalité, est essentiellement inductif, et, par extension, en intelligence artificielle, les systèmes d'apprentissage à réseau de neurones se différencient des systèmes algorithmiques en ce qu'ils sont inductifs, alors que les systèmes algorithmiques sont, eux, déductifs. La sélection naturelle, elle-même, en éliminant les "moins adaptés" par la confrontation de l'espèce avec les difficultés de l'existence dans un milieu donné, est aussi un phénomène fondamentalement inductif.
Note: il est assez curieux d'observer que le principe de déduction est infiniment plus simple que le principe d'induction, pourtant, la vie parait s'adapter selon le principe d'induction et, paradoxalement, le cerveau qui est conçu pour l'induction n'est pas qu'une machine logique : il n'intègre pas spontanément et doit acquérir la déduction qui est, pourtant, plus simple.

Il faut remarquer que si l'induction est un raisonnement intrinsèquement probabiliste, il est cependant impossible d'évaluer la probabilité sous-jacente. En effet, celle-ci est une probabilité conditionnelle et elle restera toujours soumise aux choix des conditions de son évaluation, sachant qu'il peut y avoir des conditions auxquelles on n'a pas pensé et qui changeraient, s'ils étaient pris en compte, complètement les données du problème.

exemple : Si je ne rencontre que des chats gris, il me sera facile d'en induire que tous les chats sont gris avec un fort niveau de certitude. Mais si je réalise que le fait que les chats sont gris pourrait être spécifique à la région ou je vis, et qu'il pourrait exister une autre région ou tous les chats sont roux et encore une autre avec des chats verts (pour prendre une hypothèse réelle ET une hypothèse absurde), mon évaluation de ce niveau de certitude en sera complètement mise en cause.

De plus, le niveau de certitude de ma loi dépendra du coefficient avec lequel j'accepte qu'elle ne soit pas tout à fait universelle et admette des exceptions.

Je peux considérer, par exemple, que la relativité générale, est un cas particulier qui ne s'applique que dans des situations réelles, mais que cela ne met pas en cause en général la théorie de la gravitation universelle, ou au contraire, je peux décider que la gravitation universelle doit être précise et exacte, auquel cas, elle est fausse.

  Quelques exemples classiques

La plus célèbre des inductions est probablement l'exemple qu'en donne Aristote :

L'âne, le mulet, le cheval vivent longtemps  ;
or, ce sont là tous les animaux sans fiel  ;
donc, tous les animaux sans fiel vivent longtemps.

On voit bien que l'induction repose sur une supposition : que « ce sont là tous les animaux sans fiel ». Le syllogisme inductif est dit hypothétique (non-scientifique) :

Socrate est chauve ;
Socrate est un homme ;
donc les hommes sont chauves.

a une conclusion fausse, car Socrate ne peut pas représenter l'homme, en la matière.

Un exemple célèbre d'induction de Claude Bernard, illustrant la méthode scientifique :

un lapin normalement nourri a une urine basique ;
le même lapin à jeun a une urine acide ;
donc tous les herbivores ont une urine basique ;
alors que tous les animaux mal nourris et les carnivores ont une urine acide.

On voit là l'usage de l'induction : à partir d'observations (qui sont toujours des propositions particulières), l'induction produit des propositions générales hypothétiques qui sont ensuite testables. C'est là, très simplifiée, l'analyse de Claude Bernard, ainsi que celle de Karl Popper.

Hume considérait[4] que l'origine de l'induction (l'idée de connexion) est l'habitude. Si cette habitude produit une croyance en l'induction qui repose surtout sur une "force" (une croyance) psychologique, l'induction conserve cependant, pour lui, une dimension "logique" très importante puisque Hume essaye de formuler dans le Traité de la nature humaine des règles de ce qui rend valable le recours l'induction . L'induction a donc certes sa source dans la psychologie humaine, mais sa valeur ne s'y réduit pas.

Karl Popper[5] soutient au contraire que « Hume [n'a] jamais reconnu toute la portée de sa propre analyse logique », et il propose un renversement : « au lieu d'expliquer notre propension à présumer l'existence de régularité comme un effet de la répétition, j'ai imaginé d'expliquer ce qui est répétition à nos yeux comme le résultat de notre tendance à supposer et à rechercher de la régularité ». Mais, en réalité, Hume ne dit pas autre chose : nous sommes en effet selon lui disposés par l'imagination à trouver de la régularité dans les phénomènes. Sans cette disposition, aucune répétition ne produirait en nous de raisonnement inductif.

Longtemps purement empirique, le processus d'induction a été formalisé par le Théorème de Cox-Jaynes qui confirme la rationalité de la méthode pour la mise à jour des connaissances, la quantifie, et "unifie" l'univers de la logique booléenne avec celui des probabilités (vues non plus en tant que passage à la limite de fréquences, mais comme une traduction numérique d'un état de connaissance dans ce paradigme).

  Voir aussi

  Articles connexes

  Liens externes

  • (fr)

  Bibliographie

  • (en) Michael R. Genesereth and Nils J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987 [détail de l’édition] , chap. 7 Induction, pp. 161-176

  Références

  1. En fait l'abduction peut s'énoncer formellement en calcul des propositions, tandis que l'induction s'énonce en calcul des prédicats. Cependant, ces deux types de raisonnement sont néanmoins liés parce que l'abduction peut être utilisée pour justifier l'induction.
  2. John Vickers. The Problem of Induction. The Stanford Encyclopedia of Philosophy.
  3. pas expliqué par la loi est un euphémisme habituellement employé pour dire que l'exemple contredit la loi, mais qu'on n'a pas envie pour le moment de rejeter la loi parce qu'on n'en a pas de meilleure pour la remplacer. Dans une moindre mesure, pas expliqué peut aussi signifier qu'on continue à utiliser la loi, parce que dans la très grande majorité des cas elle est vérifiée et qu'elle est beaucoup plus simple à utiliser ou à comprendre qu'une autre loi plus exacte.
  4. Enquête sur l'entendement humain, VII,2
  5. Conjectures et réfutations, p. 78
   
               

 

Toutes les traductions de Induction logique


Contenu de sensagent

  • définitions
  • synonymes
  • antonymes
  • encyclopédie

Dictionnaire et traducteur pour mobile

⇨ Nouveau : sensagent est maintenant disponible sur votre mobile

   Publicité ▼

sensagent's office

Raccourcis et gadgets. Gratuit.

* Raccourci Windows : sensagent.

* Widget Vista : sensagent.

dictionnaire et traducteur pour sites web

Alexandria

Une fenêtre (pop-into) d'information (contenu principal de Sensagent) est invoquée un double-clic sur n'importe quel mot de votre page web. LA fenêtre fournit des explications et des traductions contextuelles, c'est-à-dire sans obliger votre visiteur à quitter votre page web !

Essayer ici, télécharger le code;

SensagentBox

Avec la boîte de recherches Sensagent, les visiteurs de votre site peuvent également accéder à une information de référence pertinente parmi plus de 5 millions de pages web indexées sur Sensagent.com. Vous pouvez Choisir la taille qui convient le mieux à votre site et adapter la charte graphique.

Solution commerce électronique

Augmenter le contenu de votre site

Ajouter de nouveaux contenus Add à votre site depuis Sensagent par XML.

Parcourir les produits et les annonces

Obtenir des informations en XML pour filtrer le meilleur contenu.

Indexer des images et définir des méta-données

Fixer la signification de chaque méta-donnée (multilingue).


Renseignements suite à un email de description de votre projet.

Jeux de lettres

Les jeux de lettre français sont :
○   Anagrammes
○   jokers, mots-croisés
○   Lettris
○   Boggle.

Lettris

Lettris est un jeu de lettres gravitationnelles proche de Tetris. Chaque lettre qui apparaît descend ; il faut placer les lettres de telle manière que des mots se forment (gauche, droit, haut et bas) et que de la place soit libérée.

boggle

Il s'agit en 3 minutes de trouver le plus grand nombre de mots possibles de trois lettres et plus dans une grille de 16 lettres. Il est aussi possible de jouer avec la grille de 25 cases. Les lettres doivent être adjacentes et les mots les plus longs sont les meilleurs. Participer au concours et enregistrer votre nom dans la liste de meilleurs joueurs ! Jouer

Dictionnaire de la langue française
Principales Références

La plupart des définitions du français sont proposées par SenseGates et comportent un approfondissement avec Littré et plusieurs auteurs techniques spécialisés.
Le dictionnaire des synonymes est surtout dérivé du dictionnaire intégral (TID).
L'encyclopédie française bénéficie de la licence Wikipedia (GNU).

Copyright

Les jeux de lettres anagramme, mot-croisé, joker, Lettris et Boggle sont proposés par Memodata.
Le service web Alexandria est motorisé par Memodata pour faciliter les recherches sur Ebay.
La SensagentBox est offerte par sensAgent.

Traduction

Changer la langue cible pour obtenir des traductions.
Astuce: parcourir les champs sémantiques du dictionnaire analogique en plusieurs langues pour mieux apprendre avec sensagent.

Dernières recherches dans le dictionnaire :

5348 visiteurs en ligne

calculé en 0,140s

   Publicité ▼

Je voudrais signaler :
section :
une faute d'orthographe ou de grammaire
un contenu abusif (raciste, pornographique, diffamatoire)
une violation de copyright
une erreur
un manque
autre
merci de préciser :

Mon compte

connexion

inscription

   Publicité ▼